JORES JOINT RESEARCH PROJECT:

NUMERICAL METHODS VALIDATION

FOR DESIGNING AND BUILDING MORE ADVANCED

AND ENERGY EFFICIENT SHIPS

DR DMITRIY PONKRATOV

JORES PROJECT, <u>DP@JORES.NET</u>

ROYAL INSTITUTION OF NAVAL ARCHITECT, DPONKRATOV@RINA.ORG.UK

The revised IMO GHG strategy

Total: Well-to-wake GHG emissions; Intensity: CO2 emitted per transport work; Fuel: Uptake of zero or near-zero GHG technologies, fuels and/or energy sources

DNV Maritime forecast to 2050

DNV Maritime forecast to 2050

DNV Maritime forecast to 2050

Digitalisation gives a great opportunity to address the Energy Efficiency challenge

Digitalisation gives a great opportunity to address the Energy Efficiency challenge

We could not make it 50 years ago

Digitalisation gives a great opportunity to address the Energy Efficiency challenge

We could not make it 50 years ago

We have all the necessary tools now

Propeller optimisation

What can we do?

What can we do? Propeller optimisation Hull optimisation

What can we do? **Propeller optimisation**

Hull optimisation

Energy Saving Device (ESD) optimisation

Propeller optimisation

Hull optimisation

Energy Saving Device (ESD) optimisation

Optimisation of the entire system (Hull + Propeller + ESD etc)

Optimisation for contractual (ideal) sea trials condition

Optimisation for contractual (ideal) sea trials condition

Optimisation for real sea condition

What can we do? Optimisation for smooth hull and propeller

What can we do? Optimisation for smooth hull and propeller Optimisation for real conditions of hull and propeller

Optimisation for smooth hull and propeller Optimisation for real conditions of hull and propeller

Not really! Unfortunately, digital technologies require validation!

Computational Fluid Dynamics

Not really! Unfortunately, digital technologies require validation!

Ship design

Cradle

DE VOOGT

DSME

HYUNDAI

SOFAR

INSTRUMENTS

VAF

MSC Software Company

Project Participants (50+ companies)				
ABS	AkzoNobel	/ \nsys	# 1	NM U

BUREAU VERITAS

CONVERGE CFD SOFTWARE

DELTAMARIN°

engys

Open-Source CFD Blog

ibmv

COSCO

VICUSdt

KONGSBERG

MARIN

MITSUBISHI

Royal **THC**

SSPA

WÄRTSILÄ

MEYER TURKU

NAKASHIMA

SAMSUNG

Sumitomo
Heavy Industries, Ltd.

WIK

MAN Energy Solutions

MIROS

National research council Canada

SHIPFLOW

RI A

Future in the making

MITSUI E&S

SIEMENS

TEIGNBRIDGE

AkzoNobel

CHALMERS
UNIVERSITY OF TECHNOLOGY

DAMEN

DNV

HSV4

sirehna a pons company

MMG

GHENT

UNIVERSITY

(1) SINTEF

OCEAN

Governments funding

Governments funding

European Union funding

Governments funding

European Union funding

Project funded by the participants (1.5 million Euro)

Project Vessels

A tug boat A bulk carrier A vessel A vessel

All the results and geometry files will be available in the public domain in 2024

Together we can make it!

